安防之家讯:九十年代后期,随着计算机处理速度的飞速提高及图形识别算法的革命性改进,”面像识别“技术脱颖而出。他以其独特的方便、经济、准确而受到世人的瞩目。
1.面像识别技术简介
面像识别技术包含面像检测、面像跟踪与面像比对等课题。面像检测是指在动态的场景与复杂的背景中,判断是否存在面像并分离出面像。面像跟踪指对被检测到的面像进行动态目标跟踪。面像比对则是对被检测到的面像进行身份确认或在面像库中进行目标搜索。
面像检测分为参考模板、人脸规则、样本学习、肤色模型与特征子脸等方法。参考模板方法首先设计一个或数个标准人脸模板,然后计算测试样本与标准模板之间的匹配程度,通过计算机比对来判断是否存在人脸;人脸具有一定的结构分布特征,人脸规则即提取这些特征生成相应的规则以判断是否测试样本包含人脸;样本学习则采用模式识别中人工神经网络方法,通过对面像样本集和非面像样本集的学习产生分类器;肤色模型依据面像肤色在色彩空间中分布相对集中的规律来进行检测;特征子脸将所有面像集合视为一个面像子空间,基于检测样本与其在子空间的投影之间的距离判断是否存在面像。上述方法在实际系统中也可综合采用。
面像跟踪一般采用基于模型的方法或基于运动与模型相结合的方法,另外,肤色模型跟踪也不失为一种简单有效的手段。
面像比对从本质上讲是采样面像与库存面像的依次比对并找出最佳匹配对象。因此,面像的描述决定了面像识别的具体方法与性能。目前主要有特征向量与面纹模板两种描述方法,特征向量法先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离、角度等等属性,然后计算出它们的几何特征量,这些特征量形成一描述该面像的特征向量;面纹模板法则在库中存储若干标准面像模板或面像器官模板,在比对时,采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。另外,还有模式识别的自相关网络或特征与模板结合的方法。
面像识别系统则采用“局部特征分析”(LocalFeatureAnalysis,LFA)算法,该算法速度快,误认低,无需学习,利用人脸各器官及特征部位的方位、比例、对应几何关系等数据形成识别参数,与数据库中所有原始参数比较、判断、确认。
与其他>生物识别技术,诸如指纹识别,掌形识别,眼虹膜识别和声音识别相比较,面像识别具有以下两点独一无二的特性:
1)其他每种生物识别方法都需要一些人的配合动作,而面像识别不需要被动配合,可以自动用在隐蔽的场合,如公安部门监控行动。
2)当记录一个企图登录的人的生物记录时,只有面像能更直观,更方便的核查该人的身份。
由于与传统的生物识别技术相比,面像识别具有更为简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、控制等各个方面。
2.面像识别技术原理
2.1基本算法--局部特征分析
任何一个面像识别系统的基本要点是如何将面像进行编码。面像识别技术使用局部特征分析LFA来描述面部图象,他源于类似搭建积木的局部统计的原理。
LFA是基于以下事实的一种计算方法,即所有的面像(包括各种复杂的式样)都可以从由很多不能再简化的结构单元子集综合而成。这些单元使用了复杂的统计技术而形成的,它们代表了整个面像。他们通常跨越多个象素(在局部区域内)并代表了普遍的面部形状,但并不是通常意义上的面部特征。实际上面部结构单元比面像的部位要多得多。
然而,要综合形成一张逼真,精确的面像,只需要整个可用集合中很少的单元子集(12-40特征单元)。要确定身份不仅仅取决于特性的单元,还决定于他们的几何结构(比如他们的相关位置)。
通过这种方式,LFA将个人的特性对应成一种复杂的数字表达方式,可以进行对比和识别。
2.2面像识别的步骤:
1)建立面像档案:可以从摄像头采集面像文件或取照片文件,生成面纹(Faceprint)编码即特征向量;
2)获取当前面像,可以从摄像头捕捉面像或取照片输入,生成其面纹;
3)将当前面像的面纹编码与档案中的面纹编码进行检索比对;
4)确认面像身份或提出身份选择
上述整个过程都自动、连续、实时地完成。而且系统只需要普通的处理设备。门票系统的工作流程为:
·自动地在视频数据流中搜索面部图象;
·当一个出现用户的头像时;
·自动使用多种类型的匹配算法来判断在那个位置是否真的有一张脸。这些算法能够精确地探测出同时出现的多张脸,并且能够确定他们的准确位置;一旦探测到一张脸,这张脸的图象就会被从背景中分离出来,这幅图象随后将经过一系列的特殊处理来恢复它的尺寸、光线、表情和姿态。
·将这幅脸部图象在系统内部转换面纹,它包含了这张脸的特有信息;
·通过把实时获取的“面纹”和数据库中已有的"面纹"进行比对;
·完成对某张脸进行确认。
“面纹”编码方式是根据脸部的本质特征和形状来工作的,它可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,使得它可以从百万人中精确地辨认出一个人。
上述整个过程都自动、连续、实时地完成。而且系统只需要普通的处理设备。
2.3精确度与识别率
对于任何一种生物识别技术,其主要精确度指标包括:错误接受率(FAR)、错误拒绝率(FRR)和相等错误率(EER),其测试结果与所运行的分析数据库(源)有密切关系。
本系统用于FERET数据库(该数据库由美国军事研究实验室提供)时所获得的FAR和FRR的大小。
对FAR和FRR曲线交叉点进行了放大,我们可以看到这里EER=0.68%。
该测试结果证明,本系统的识别模块精确度达到国际产品的最先进水平。2.4其他技术指标
操作平台:WINDOWS95/98/2000/NT(大部分功能可以应用于UNIX和LINUX),允许使用INFORMIX数据库实现一对多的搜索。
安防之家专注于各种家居的安防,监控,防盗,安防监控,安防器材,安防设备的新闻资讯和O2O电商导购服务,敬请登陆安防之家:http://anfang.jc68.com/